News

NASA’s James Webb Space Telescope #FRP

Northrop Grumman and teammate ATK have completed manufacturing of the backplane support frame (BSF) for NASA’s James Webb Space Telescope. Northrop Grumman is under contract to NASA’s Goddard Space Flight Center in Greenbelt, Md., for the design and development of the Webb Telescope’s optics, sunshield and spacecraft.

When combined with the centre section and wings, the support frame will form the primary mirror backplane support structure, the stable platform that holds the telescope’s beryllium mirrors, instruments and other elements. It holds the 18-segment, 21-foot-diameter primary mirror nearly motionless while the telescope is peering into deep space. The backplane support frame is the backbone of the observatory, is the primary load carrying structure for launch, and holds the science instruments.

Living in Sustainable Cities of the Future

Masdar City, United Arab Emirates – This gleaming example of sustainable urban living just 17km east of Abu Dhabi is currently more university and business campus than metropolis, but when Masdar City is complete in 2025, it will be home to 40,000 residents and 50,000 commuters. The city’s master plan, designed by the architects Foster + Partners, put roads underground (and bans cars that use petrol), allowing for very narrow pedestrian streets that capture and funnel the breezes, aided and shaded by thick city walls, a technique Arab builders have used for centuries. The city’s modern elements come in the renewable energy and clean tech sources being developed at the Masdar Institute of Science and Technology, which currently houses 250 students on campus. The city is completely powered by renewable energy sources such as solar, and the buildings are being constructed with recycled materials, including steel and aluminium. Energy and potable water demands have been reduced by more than 50%, using a quarter of the energy of a conventional city the same size. “We are addressing social, economic and environmental sustainability and also making sure it’s affordable,” said Omar Zaafrani, communications manager for Masdar City. The building that houses both the Masdar and International Renewable Energy Agency headquarters will have stores and restaurants in addition to office space, powered by 1,000sqm of photovoltaic panels. While no residential buildings beyond dormitories have been built, they are in the works. “There are various residential plots around the city, and over the coming years they will be tendered out to global architects,” Zaafrani explained. The city’s economic free zone – with zero taxes, import tariffs or restrictions on foreign hires – is set up to specifically attract clean energy and tech companies, clustering them together in incubator office buildings. “The number one target is people who work in Abu Dhabi and around the UAE,” Zaafrani said. “We are trying to make sure as we build up the city, there will be demand for both commercial and residential spaces.” Currently, a four-bedroom villa in central Abu Dhabi rents for around 200,000 dirhams a year, while a two-bedroom flat in Reem Island rents for around 100,000 dirhams. Over the next two years, 45,000 new flats and houses will come available.

Pelamis P2 Celebrates 1 Yr of Accelerated Real-Sea Testing

The ScottishPower Renewables (SPR) owned Pelamis P2 wave energy converter has this week completed its first year of a robust testing programme at the European Marine Energy Centre (EMEC) in Orkney.

The combined P2 test programme has now accumulated 7500 grid connected operating hours, and exported 160MWh of electricity to the national grid. These are encouraging figures for this stage of the testing programme and it is anticipated that generated powers will continue to rise as the programme develops. These P2 operating hours bring the cumulative total for Pelamis technology up to over 10,000 grid connected operating hours, demonstrating both the extensive experience of the Pelamis team and the wealth of learning delivered by the P2 testing programme specifically.

Following its first installation in May 2012 alongside the E.ON owned Pelamis P2 machine at the Billia Croo test site, the machine has been undergoing a progressive work-up testing programme, being exposed to increasingly large wave conditions for longer deployment periods. An accelerated form of the work-up programme was made possible thanks to the wealth of learning accumulated since the beginning of the E.ON Pelamis P2 demonstration programme in October 2010, and the resulting confidence of both the customer and Pelamis operation teams in this testing approach.

As a result of this accelerated testing strategy, the SPR owned Pelamis P2 wave energy converter was able to generate twice the amount of electricity in half the elapsed calendar time, during its initial test parameters of small to medium seas. In deployments since then, the SPR Pelamis machine has experienced larger seas with significant wave heights of up to 5mHs, including individual waves of over 9m. Electricity generation has increased as anticipated in these larger, more energetic seas.

The proven average output capability of the device, over the annual spectrum of wave conditions at the EMEC site, is now close to 100kW. Demonstrations of further improvements are anticipated through control optimisation which could double that number as targeted for the next stage of the project.

The machines have now experienced around 90% of sea state occurrences for an average year, allowing the Pelamis team to quantify the performance and electricity output of the P2 machines and gain insight into the factors influencing this. This broad range of data from real sea testing is invaluable for the on-going development of the technology, allowing focused design and innovation for future enhancements of the Pelamis machine. These enhancements are vital to ensure that the costs of generating electricity from wave power continue to fall, in order to become cost competitive with other sources of offshore renewable energy. This is an important direction for Pelamis to take as an industry leader. Announced in February, Pelamis is working on a project commissioned and funded by the Energy Technologies Institute investigating a multitude of opportunities for performance enhancement and rapid reduction in cost of energy.

Derrik Robb, Operations Director at Pelamis Wave Power, said: “The results achieved during this testing programme are testament to how far we have progressed, working collaboratively with our customers. The wealth of knowledge and data collected to date has been instrumental in reinforcing our technical understanding of the Pelamis and its control systems and we continue to apply key learning points from one machine to the other, thus reducing time spent addressing first-of-type issues.”

Alan Mortimer, Head of Innovation at ScottishPower Renewables, said: “The past year at EMEC has been an invaluable learning experience for SPR, E.ON and Pelamis.  The collaboration has worked well and all parties have benefited from sharing of information, risks and innovation.

“The creation of the Operations Team and Health & Safety Systems has been a substantial effort this year and now provides the basis for us to explore the performance potential of the P2 machine.  The output of the device is steadily increasing as experience is gained and as the controller is fine-tuned for maximum energy extraction. We anticipate further significant improvements over the next 12 months, with the remainder of the test plan focused on optimising the power produced in the full range of sea-states in order to progress the technology towards commercially-viable status.”

Pelamis’ patented ‘plug & play’ system for the safe and rapid installation and removal of the machines in water has proved its strength and allowed for the towing and installation to be routinely conducted in wave heights of up to 2.5 metres as well as in darkness. This unique feature of the Pelamis P2 machine greatly expands the opportunities for operations and safe intervention, as it allows for flexible, round-the-clock operations, which is particularly important in the waters to the north of Scotland and over the winter months. The two Pelamis machines have been deployed in tandem during winter.

A Tale of Two Bridges

Composite Advantage in Dayton, Ohio, has provided FRP bridge decks for seven pedestrian bridges in the past four years. Scott Reeve, president of the company, is upbeat about the outlook for composites in the infrastructure segment. We’re getting to the point where engineers, designers and procurement are letting us go head-to-head against concrete, he says. In the past, we were either excluded because they only considered traditional options or we had to do a lot of work to be a special demo case.

However, Reeve admits that progress is slow. I tell my employees, It took 30 years for steel to replace wood in bridges. It will take longer than we want for composites to replace concrete, he says. You have to keep working at it.

One way that Composite Advantage has made inroads in infrastructure is by providing products that help solve construction challenges and highlight the advantages of composites. That’s the case for the two bridge projects presented here: One required accelerated construction, while the other was a highly-engineered bridge. Both utilized prefabricated FRP bridge decks.

The decks were manufactured using the company’s FiberSPAN molded sandwich construction, which employs fiberglass top and bottom skins and closely-spaced internal webs that function like a series of I-beams. The fibers in the webs are oriented at ± 45° angles and infused with resin to form very strong, stiff shear webs for the sandwich cross-section. The closely-spaced webs provide good crushing resistance to concentrated loads, and there is no local skin deflection since the skins are well supported by the webs.

Composite Wing Components for Airbus A350 XWB

GE Aviation, Hamble has achieved a major program milestone with the delivery of its initial production wing fixed trailing edge components for the first A350 XWB to fly – ‘MSN001’. The first A350 XWB-MSN001 is now structurally complete and is currently undergoing ground testing in Toulouse.

The A350 XWB wing fixed trailing edge package is the largest production contract awarded in GE Aviation Hamble’s 75-year history, comprising more than 3,000 components that include structural composite panels and complex machined assemblies. The A350 XWB has a total wingspan of more than 64 meters.

“This delivery start up results from major achievements at GE Aviation in design and manufacturing – bringing together new tool sets, materials and technologies, while also involving concurrent engineering with global suppliers to obtain material and long-lead items in unprecedented timescales,” said Steve Walters, executive product leader for GE Aviation’s aerostructures and nacelle activities. “We have proved our capabilities and have created a secure foundation to build on for the future.”

GE Aviation will provide the wing fixed trailing edge for all three A350 XWB family members: the A350-800, -900 and -1000.

The company began its work on the wing components in October 2008, progressing from a very basic conceptual design while enhancing its management to address the project’s magnitude. In addition to increasing the scope of GE Aviation’s own technical capabilities, the company involved a global design team that included GE Aviation resources in Poland and India.

“During the program, GE Aviation, as risk-sharing partner, developed a close working relationship with Airbus, as the aircraft manufacturer providing advice, assistance and support that enabled us to meet this major delivery milestone,” Walters added.

In addition to major investments already implemented at the Hamble-le-Rice factory in Southampton, Hampshire for A350 XWB production, the site will see further enhancements with the creation of a new composites facility dedicated to this Airbus program.

‘Greenly’ Powering US Telecommunications Equipment

Plastics Unlimited Inc manufactures the helical shaped rotor blades and end caps for US company Windstrips vertical axis (twisted Savonius design) wind turbines. These turbines are being installed on communications towers in the US, offering the telecommunications companies a greener way to power their equipment.

This application won the Composites Sustainability Award, in the American Composites Manufacturers Association (ACMA)’s Awards for Composites Excellence (ACE) competition. The award was presented during the ACMA’s Composites 2013 trade show in Orlando, Florida, in January.


Loading...